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stants only up to and including third-order are 
used. This would imply that a shock wave in 
this direction is unstable and spreads as it 
travels. With the addition of the fourth-order 
constant the curve has a minimum at a value 
of u = 0.032 mm/ JLsec. The minimum sound 
speed occurs at a compression ratio V /V. = 
0.9830 and a stress fT~ = 15.4 kb. Its value there 
'is 5.6889 X 10· cm/sec. The critical shock 
strength above which a single shock is stable 
occurs at u = 0.063 mm/p.sec, VIVo = 0.9890, 

.and fTe = 9.6 kb. The lack of a unique shock 
speed below the critical value probably does not 
influence the operation of quartz shock trans
ducers appreciably, because the variation in 
speed is small ( < 1 % ) . 

The U.-Up plot for Z-cut crystals is nearly 
a straight line; however, it is easily shown that 
a straight line does not accurately fit the slope 
at zero particle velocity. Thus, the straight 
line relation often assumed in shock studies is 
only an approximation for quartz shocked in 
either the X or the Z direction. 

It is also easily shown that the Murnaghan 
form of the equation of state, when fitted to the 
correct slope and curvature of the fT-V curve 
(utilizing second-and third-order constants), 
does not accurately fit the higher-pressure data 
and is therefore an approximation only. 

These statements can be illustrated by exam
ining the derivatives of each function. Expand
ing the relation for fT in (11) in terms of y 
yields 

. [1 ( Clll) 
-fTI = Cll'Y 1 -"2 3 + ~ I' 

+ 1. (3 + 6 ~ + Cl1U)'Y2 + ... J (12) 
6 Cll Cll 

A linear relation between shock and particle 
velocity of the form 

v, = a + bu" 

can be written, by means of the Rankine
Hugoniot jump conditions, as 

where po is initial density, and the relation can 
be expanded to give 

Finally, the one-dimensional strain analog of 
the Murnaghan equation 

-fTI = (A/B)[(VO/V)B - 1] 

can be expanded to give 

-fT = A'Y[1 + HB + 1)-y 

+ HB + 1)(B + 2)-y2 + ... ] (14) 

Equating the derivatives up to second-order, 
we have 

2 
Cll = poa 

-(3 + CIlI) 
Cn 

A (1st order) 

4b (B + 1) (2nd order) 

Evaluating the parameters A, b, and B from 
these equations, we have 

X cut 

A poa
2 = Cn = 8.757 X 1011 

b = -0.15 

Z cut 

B = -1.6 

A poa
2 = C33 = 10.575 X 1011 

b = 1.177 B = 3.71 

With these values all three expressions have 
the same slope and curvature at zero stress. 
The predicted stresses for various compres
sions are shown in Table 3. 

That the closed form expressions are approxi
mate is hardly surprising inasmuch as they are 
both empirical with no known physical basis. 
They are of value because they both are two
parameter functions that have physically rea
sonable shapes and they are, therefore, conven
ient for interpolation and extrapolation when 
experimental information is lacking. 

The close agreement of the Murnaghan and 
linear U.-u. fits is somewhat curious. It pre
sumably results from the fact that the third
and higher-order coefficients in the expansions 
of these formulas are relatively small; they 
must agree exactly, of course, to terms of sec
ond order. Direct calculation shows that the 
coefficient of the third-order term in (12) is, 
for each crystal orientation, a factor of 5 or 
more greater than the corresponding term in 
(13) and (14). 
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TABLE 3. Stress in Kilobars 

X Z 

Linear Finite Linear Finite 
VIVo Murnaghan U,-Up Strain Murnaghan U,-Up Strain 

0.99 8 .7 8.8 8.7 10.7 10.8 10.8 
0.98 17 .4 17 .5 17.5 21.8 22.2 22 .3 
0.97 26.1 26.3 26.5 32 .0 34.0 34.5 
0.96 34.7 35.0 35 .9 47.1 46.5 47.6 
0.95 43.1 43 .7 45 .7 60.3 59 .7 61.6 
0.94 51. 7 52 .5 56.1 73.9 73 .5 76.5 
0.93 59.9 61.3 67.1 87 .9 88.0 92.6 
0.92 68 .6 70.0 78.9 103.4 103 .0 109.7 
0.91 77 .0 78.8 91.4 119 .6 119.0 127.9 
0.90 85 .2 87.6 104.7 136.4 135.8 147 .3 

Knopofj's [1963] suggestion that because of 
the arbitrariness in the definition of strain 
alternative definitions may prove more suitable 
for representing constitutive relations would 
seem to be worthy of further consideration. 
Some guidance from physical reasoning is neces
sary, however, to provide any degree of gener
ality to a given definition. 

order constants from these sources is approxi
mately ±3 and ±10% for X- and Z-cut crys
tals, respectively. 

Error analysis. The precision of the fourth
order constants is determined by the precision 
of the shock data and by the precision of the 
second- and third-order constants. Of these the 
error in the shock data has the largest effect. 

Differentiation of the stress-strain relation 
shows that the error in CUll due to an error in 
en is 

The error due to inaccuracies in the shock 
data is evaluated as follows. From the jump 
conditions (equation 3) we have 

1 - (V/Vo) = u/U 
and 

0' = PoUu 

Hence, 

_ 0 V = !£ ( ou _ oU) 
Vo U 'l{- U 

and 

~ 

dCllll = 
CUll 

00'/0' = ou/u + oU/U ... 

and for strains N, = 6 X 10....2 the coefficient 
is approximately -10. Thus, a 0.1% error in 
Cll results in a 1% error in Cm,. Similarly, an 
error in the third-order constant Cm is equiva
lent to an error in Cnll of 

and the coefficient for strains of approximately 
6 X 10-:> is 0.5. For Z-cut crystals the corre
sponding coefficients are approximately 5 and 2. 

Taking the precision of the second- and third
order constants to be approximately ±0.1 
and ±5%, respectively [McSkimin et al., 1965; 
Thurston et ai., 1966], the error in the fourth-

We are interested, however, not in the total 
error in the measured state but in the error in 
the Hugoniot stress-strain curve. That is, we~ 
wish to know the error in stress at a given 
specific volume. 

If the true slope of the Hugoniot is dul dV, 
the quantity of interest is 

~u = (~_~) oV 
0' dV 0 V 0' 

This can be reduced to 

~u aU [dU/dV ] 
--;; = U u/ (Vo - V) - 1 

ou[ du/dV + ] 
- -:;; u/(Vo - V) 1 


